The Crystal Structure of the L-1-Monoglyceride of 11-Bromoundecanoic Acid

By KÅRE LARSSON

Crystallography Group, Department of Medical Biochemistry, University of Göteborg, Sweden

(Received 20 December 1965)

The optically active 1-monoglyceride of 11-bromoundecanoic acid crystallizes in a monoclinic form with unit-cell dimensions $a = 5.78 \pm 0.02$, $b = 7.43 \pm 0.03$, $c = 37.6 \pm 0.1$ Å, $\beta = 92.0 \pm 0.2^{\circ}$. The space group is $P2_1$ and the unit cell contains four molecules. The molecules are arranged 'head-to-head' in layers with parallel hydrocarbon chains. Only the hydroxyl groups participate in the hydrogen bond system.

Introduction

The general features of the molecular packing in fats are known from crystal structure determinations of mono-, di-, and triglycerides (Vand & Bell, 1951; Jensen & Mabis, 1963; Larsson, 1963a, 1964a, b, c). Monoglycerides are often used as emulsifiers in technical processing of fats and their function is related to their ability to form mesomorphic phases. The liquid crystalline structures of monoglycerides are also of biological interest, e.g. for the understanding of fat absorption into the mucosal cell. In order to obtain information on the molecular arrangement in these complex systems an X-ray investigation of mesomorphic monoglyceride phases has been started. It is only possible, however, to determine the main features of the molecular arrangement. The detailed structure of the polar region, which has a relatively high degree of order, can thus not be derived directly. Many possibilities of inter- as well as intramolecular hydrogen bonding must be considered and it is felt that discussions on hydrogen bonding in the mesomorphic phases should be based on knowledge of the different structures occurring in the crystalline state.

An optical antipode was chosen for this study as both the racemic form and the symmetric 2-isomer have been analysed earlier (Larsson, 1964b, c). In order to simplify the structure analysis a monoglyceride containing an ω -bromine atom was used, as compounds where the terminating methyl groups are replaced by bromine atoms often crystallize isotypically with the corresponding unsubstituted compounds (Larsson, 1963b). This bromo monoglyceride was, however, not isotypic with the stable form of the unsubstituted compound but the chain packing and the general 'head-tohead' arrangement of the molecules are the same in the two forms.

Preparation of crystals

L-1-Mono-11-bromoundecanoin was synthesized according to the general method for preparation of optically active glycerides developed by Baer & Fischer (1945), The specific rotation $[\alpha]_D$ in dry pyridine (c, 6.4) was -3.6° . Crystals for X-ray work were grown from petroleum spirit, b.p. 20-40°C as thin plates with (001) faces dominating and with edges parallel to the a and b axes. The crystals were biaxial positive and frequently twinned on the (001) planes. Only one crystal form was obtained from solvents and as the compound was found to isomerize very rapidly near the melting point (52.9–53.3°C) the general phase behaviour could not be studied. The crystal form obtained is a β' form according to the glyceride classification suggested by the present author (Larsson, 1964c).

X-ray data

Rotation and Weissenberg photographs of the (Hkl)and (hKl) zones were taken with Cu K α radiation using a calibrated camera. The following data were obtained:

Molecular formula $C_{14}H_{27}O_4Br$ Molecular weight 339·3 Unit cell, monoclinic, $a = 5 \cdot 78 \pm 0.02$, $b = 7 \cdot 43 \pm 0.03$, $c = 37 \cdot 6 \pm 0.1$ Å, $\beta = 92 \cdot 0 \pm 0.2^{\circ}$ Four molecules per unit cell Density calculated 1.396 g.cm⁻³ Density measured 1.385 g.cm⁻³ Absent reflexions 0k0 when k odd Space group $P2_1$ (taking the optical activity into account).

The reflexion intensities were estimated visually by the multiple-film technique and corrected for the polarization and Lorentz factors but not for absorption (very small crystals were used). Absolute values were later obtained by comparison with calculated structure factors.

Structure determination

The positions of the two bromine atoms in the asymmetric unit could readily be derived from the Patterson function which was sharpened to correspond to point atoms at rest (Abrahamsson & Maslen, 1962). A bromine-phased three-dimensional electron density calculation showed all the carbon atoms of the hydrocarbon chains clearly, whereas only low and broad ridges were found in the region of the cell containing the polar groups. The chains appeared to be pseudosymmetrically related and their symmetry is $P2_1/a$ pro-

vided that there are no deviations from the common orthorhombic chain packing $O \perp$. The positions of the atoms of acyl chains were refined by a few cycles of structure factor and electron density calculations. The difficulties in obtaining positions for the rest of the atoms were due to the $P2_1/a$ symmetry of the maps and a further complication was that the positions corresponding to the true structure were so close to the superimposed false positions that only two atoms in the polar region gave resolved peaks. Their coordinates were derived by trial and error, making use of the known stereochemistry, and refined by Fourier methods. Blockdiagonal least-squares refinement was then started with anisotropic vibration parameters for the bromine atoms and isotropic temperature factors for carbon and oxygen atoms. Owing to the large number of parameters in comparison with the number of observed independent reflexions, and as no pronounced anisotropic movements of carbon and oxygen atoms were indicated from the Fourier maps, only isotropic temperature factors were used for these atoms. The hydrogen atoms of the hydrocarbon chains were included in the structure factor calculation with positions according to the known data from normal paraffins (C-H bond length 1.09 Å and H–C–H bond angle 109.5°) and with the same temperature factors as the corresponding hydrogencarrying carbon atom. The weighting scheme applied in the refinement was

$$w = \frac{1}{1 + [(|F_o| - 8|F_{\min}|)/5|F_{\min}|]^2}.$$

The structure refined to an R value of 0.13 for the 680 observed reflexions, and the shifts in the atomic coordinates were then about one third of the standard deviations. The calculations were performed on the Datasaab D21 computer with programs designed by Abrahamsson, Aleby, Larsson, Nilsson, Selin & Westerdahl (1965). The atomic scattering factors were taken from International Tables for X-ray Crystallography (1962).

Discussion

The three-dimensional electron-density series is illustrated in Fig. 1, where also the numbering of the atoms is shown (the second molecule in the asymmetric unit has primed numbers). The final atomic parameters and their standard deviations are given in Tables 1, 2(a)and 2(b). Observed and calculated structure factors are listed in Table 3.

Figs. 2 and 3 show the molecular arrangement. The molecules are packed 'head-to-head' in layers of double molecular length. The hydrocarbon chains are tilted 63.3° towards the end group plane and packed according to the common orthorhombic chain packing $(O \perp)$. The dimensions of the subcell (calculated from average positions of the hydrocarbon chain atoms) are

$$a = 5.16, b = 7.43, c = 2.47 \text{ Å}.$$

Table 1. Atomic coordinates with their standard deviations $\times 10^4$ given in brackets

	x/a	$\sigma(x/a)$	у/b	$\sigma(y/b)$	z/c	$\sigma(z/c)$
Br(1)	1.5369	(17)	0.4508	(15)	0.0350	(3)
C(1)	1.2667	(110)	0.5350	(127)	0.0609	(16)
C(2)	1.2801	(111)	0.4539	(128)	0.0956	(16)
C(3)	1.0768	(111)	0.5502	(133)	0.1171	(16)
C(4)	1.0858	(112)	0.4512	(128)	0.1551	(17)
C(5)	0.8951	(101)	0.5416	(125)	0.1755	(15)
C(6)	0.8848	(134)	0.4469	(150)	0.2119	(20)
C(7)	0.7050	(115)	0.5391	(138)	0.2336	(17)
C(8)	0.7141	(130)	0.4576	(144)	0.2726	(19)
C(9)	0.5139	(108)	0.5481	(131)	0.2916	(16)
C(10)	0.5386	(113)	0.4344	(134)	0.3278	(17)
C(11)	0.3461	(106)	0.4961	(112)	0.3501	(16)
C(12)	0.1521	(97)	0.4254	(112)	0.4038	(14)
C(13)	0.1928	(128)	0.5624	(149)	0.4306	(19)
C(14)	-0.0130	(141)	0.5564	(145)	0.4556	(20)
O(1)	0.1709	(80)	0.5858	(86)	0.3408	(12)
O(2)	0.3498	(83)	0.4272	(92)	0.3824	(13)
O(3)	0.3898	(90)	0.4965	(93)	0.4539	(14)
O(4)	0.0293	(82)	0.7186	(80)	0.4790	(12)
Br(1')	2.0477	(16)	1.0448	(16)	0.0334	(2)
C(1')	1.7842	(108)	0.9291	(122)	0.0580	(16)
C(2')	1.7807	(116)	1.0417	(134)	0.0917	(17)
C(3')	1.5703	(132)	0.9536	(150)	0.1165	(20)
C(4')	1.5882	(99)	1.0364	(115)	0.1522	(15)
C(5')	1.3946	(110)	0.9561	(133)	0.1734	(16)
C(6')	1.4075	(104)	1.0309	(120)	0.2105	(16)
C(7')	1.2124	(120)	0.9592	(137)	0.2316	(18)
C(8')	1.2215	(109)	1.0283	(124)	0.2710	(16)
C(9')	1.0179	(105)	0.9586	(119)	0.2908	(16)
C(10')	1.0313	(116)	1.0490	(137)	0.3270	(17)
C(11')	0.8378	(128)	0.9956	(135)	0.3476	(20)
C(12')	0.6626	(122)	0.9784	(130)	0.4031	(18)
C(13')	0.6841	(110)	1.1136	(108)	0.4334	(16)
C(14')	0.4853	(107)	1.0562	(119)	0.4544	(15)
O(1')	0.6888	(92)	0.8942	(91)	0.3384	(14)
O(2′)	0.8511	(84)	1.0612	(96)	0.3818	(12)
O(3')	0.8745	(81)	1.0268	(90)	0.4551	(12)
O(4')	0.4575	(86)	1.1626	(84)	0.4847	(12)

Fig.1. Superimposed sections of the three-dimensional electron-density distribution through the atomic centres parallel to (100). The corresponding projection of the two molecules in the asymmetric unit is also shown. Contours are given at intervals of 1 e.Å⁻³ for carbon and oxygen atoms and 5 e.Å⁻³ for bromine atoms, starting with 2 e.Å⁻³.

Table 2(a). Final values of the anisotropic vibration parameters U_{ij} (Å²) for the bromine atoms with their standard deviations $\times 10^4$ given in brackets

	U_{11}	$\sigma(U_{11})$	U_{22}	$\sigma(U_{22})$	U_{33}	$\sigma(U_{33})$	U_{23}	$\sigma(U_{23})$	U_{13}	$\sigma(U_{13})$	U_{12}	$\sigma(U_{12})$
Br(1)	0·0991	(65)	0·0676	(71)	0·0809	(55)	-0.0273	(88)	0·0226	(49)	-0.0625	(97)
Br(1')	0·1022	(65)	0·0837	(79)	0·0671	(48)	-0.0338	(93)	0·0258	(46)	-0.0685	(103)

Table 2(b). Final values of the isotropic temperature factors, with their standard deviations $\times 10$ given in brackets

C(1)	4·1 (1) Å ²
C(2)	4.1 (2)
C(3)	4·3 (1)
C(4)	4.1 (1)
C(5)	3.5(1)
C(6)	6.7 (2)
C(7)	$4 \cdot 7 (2)$
C(8)	6.3(2)
C(9)	3.9(1)
C(10)	4.4(2) 3.0(2)
C(12)	2.3(2)
C(12)	$\frac{2}{6} \frac{3}{1} \frac{1}{2}$
C(14)	7.3(2)
$\mathbf{O}(1)$	5.6(1)
$\tilde{O}(2)$	6.2(1)
$\tilde{O}(3)$	$8 \cdot 2 (2)$
O (4)	5.6 (1)
C(1')	3·3 (1)
C(2')	4.7 (2)
C(3')	6.6 (2)
C(4')	3.0 (1)
C(5')	4.2 (2)
C(6')	3.7 (1)
C(7)	5.4 (2)
C(8')	$4 \cdot 3 (2)$
$C(9^{\circ})$	$3 \cdot 7 (1)$
C(10)	4.9 (2)
C(12')	5.5(2)
C(12)	3.5(2)
C(14')	3.6(1)
$\vec{O}(1')$	7.1(1)
O (2′)	6.6 (1)
O(3')	6·7 (1)
O(4')	5.6 (1)

There are no significant irregularities in the chain packing. All the carbon atoms of the acyl chains lie within 0.1 Å from their best least-squares planes. Bond distances and angles for the two molecules in the asymmetric unit are given in Table 4. The average value of the carbon-carbon distance is 1.535 Å and the average bond angle in the hydrocarbon chains is 107.1°, and the standard deviations for these values are 0.06 Å and 3.3° respectively in close agreement with the corresponding standard deviations estimated from the least-squares refinement. The planes through the carboxyl groups are twisted 5° in one molecule and 19° in the other from the corresponding planes through the zigzag chains.

All the short oxygen-oxygen contacts which can correspond to hydrogen bonds are listed in Table 5. The intramolecular distances between the two free hydroxyl groups of the molecules are rather short but are not interpreted as hydrogen bonds as their directions are far from the possible directions of the attached hydrogen atom and the two free electron-pairs around each oxygen atom (assuming sp^3 hybridization). There are two lone-pair electrons available for each hydrogen atom, and it would then be possible for both electron

Fig.2. Projection along the a axis showing the molecular arrangement. The small filled and open circles are carbon and oxygen atoms respectively and the large filled circles are bromine atoms.

Fig. 3. Projection along the b axis showing the molecular arrangement. The small filled and open circles are carbon and oxygen atoms respectively and the large filled circles are bromine atoms.

Table 3. Observed and calculated structure factors (\times 100) with phase angles (FI) given in fractions of 360°

н	ĸ	L	FOBS	FCALC	FI		н	к	L	FOBS	FCALC	FI	н	ĸ	L	FOBS	PCALC	PI
2	000	6	2327 1503	3090 1147	1.0000		4	0	-23	2796 3330	3053 2760	0.5000	1	1	35 37	1058 1454	1018 1304	0.2602
000	0	10	7638	5291 9706	0.5000		4	0	-19 -18	3009 4438	3082 3543	0.5000	5	1	-28 -27	3102 1441	2203 1156	0.3617
ŏ	ŏ	12	8567	9490	0.5000		4	0	-17	1911 3227	2233	0.5000	5	1	-25 -24	1388 960	1366 1276	0.4798
ŏ	ŏ	14	9148	10357	0.5000		4	0	-15	1878	2344	0.5000	5	1	-50	1835 1511	1762 1204	0.5038 0.5864
õ	ŏ	16 17	13225	13421	0.5000		4	000	-2	3035	2644 2644	1.0000	5	1	-19	1472	1088	0.6611
8	0	18 19	3326 4724	1854 5383	1.0000		4	ŏ	-7 -7	2994	2984	1.0000	22	1	-15	2417 2405	1958	0.8391
8	0	55 50	2427 1870	2502 1491	0.5000		4	õ	_4 _3	8226 4165	7655	1.0000	2	i	-10	6091 4730	4934	0.9968
000	0	24	2521 1676	2358 1851	1.0000		4	00	-2 -1	4914 2440	4534 2596	1.0000	2	i	-8	3215	3102	0.0317
000	000	20	2988 3587	2949 3592	0.0000		4	0	0	1220 1728	1617 1530	1.0000	2	1	-6 -5	3500 609	3843 1103	0.0226
õ	ŏ	29	3713	4006	0.0000		4	000	5	1747 2484	912 2985	0.5000	2	1	-4 -1	1802 1860	1783 2315	0.0789
0 0	õ	31 32	3162 1949	3049 2154	0.0000		4	000	2	1780	2269	0.5000	2	1	2	3057 1455	3637 1315	0.4534
0	00	33 34	3233 1977	3255 2514	0.0000		4	ŏ	9 10	3079 1824	2971 1699	0.5000	22	i	24	3101	2942	0.5150
0	00	35 36	1397 1389	1716 1595	0.0000		4	Ô	11	3134 1326	3014 1043	0.5000	22	i	67	3268 5631	3546 5384	0.5171
000	000	41	1232	1413	0.5000		00	1	67	5298 1950	5704 1407	0.5133 0.4451	2	i	8 10	927 2063	1058 184 2	0.9050
1	ŏ	-28	1006	645	0.5000		000	1	8	4190 2520	4374	0.4974	5	1	11 14	597 763	1395 1078	0.0152
i	õ	-25	1322	829 875	0.5000		000	1	10	4129	1985 5259	0.4575	5	1	15 17	783	1263 1353	0.9632
1	00	-23	1248 1483	468 1537	0.5000		Ö Ö	i	13	2036 2681	1257	0.4342	22	i	19	870	577	0.9424
1	0	-20 -18	1136 751	1052 1255	0.5000		0	1	15 16	642 3541	710 2584	0.2858	22	i	21	915 979	1235	0.0543
1	000	-17 -16	725	841 1594	1.0000		00	1	17 18	984 6938	4877	0.0269	3	1	-32 -30	1045 1503	807 1550	0.2664
i	ŏ	-13	625	971	1.0000		000	1	20	1555	1902	0.9722	3	1	-29	2384 3970	2604 3934	0.2544
i 1	0 0	-9 -7	1738 846	979 313	1.0000		ŏ	i	22	2039	1819	0.9584	3	1	-25	4260	4115	0.3412
1	00	-5 -3	899 592	614 903	1.0000		0 0	i	24 26	1983	2028 873	0.9497	3	i	-22	2463	2621	0.2395
1	0	20 -35	1631 1946	1440	0.5000		0	1	34 -38	1066 1015	715	0.5023	3	i	-20 -17	1686	1648 1375	0.2696
5	000	-33	4758 5211	3406 3933	1.0000		1	1	-37 -35	2541 2602	2372 2450	0.7585	33	1	- 16 - 15	1284 4720	1180 4705	0.7064
5 5 5	000	-27	5142	4491	1.0000		1	1	-34	1066 4615	1476	0.7003	3	1	-14 -13	1518 6619	2073 6374	0.7628
22	ŏ	-22	2869	2528	0.5000		1	1	-29	1762	2024	0.3046	3	1	-12 -11	3884 4255	3919 4466	0.7822
2	0 0	-20 -19	6181 5403	5539 4988	0.5000		i	i	-27	3087 4571	3341 3425	0.2761	3	1	-10	1986	1721	0.7146
2	0 0	-18 -17	7204 6678	7147 6308	0.5000		1	1	-25 -24	6634 4782	5196 4317	0.2537	ŝ	i	-7 -6	7757	7202	0.7444
5 5	000	-16	3374	3738	0.5000		1	1	-23	6453 6087	5035 5110	0.2461	3	1	-5 -3	2661	248 3086	0.2559
222	000	-12	9790 5017	8841	0.5000		1	1	-21	4666	5270 3441 4784	0.2229	3	1	-2 -1	2296 4187	2916 3906	0.2024
22	ŏ	-10	8453 2770	7856	1.0000		i	i	-18	1496 2286	2078	0.1445	2	1	1	6273	5757	0.2302
5	00	-8 -7	5719 5211	6259 5554	1.0000		1	1	-16 -15	2206 2128	1859 2146	0.9433 0.6546	ž	i	3	4643	4554	0.2274
5	000	-6 -5	9369 2566	9771 2852	1.0000		1	1	-14 -13	5539 3120	4999 347 2	0.8239	33	i	5	3428 4769	2918 4608	0.2516
5	000	-3	3098	3507	1.0000		1	1	-12	7201 9767	7440 8924	0.7645	3	1	8	3115 1996	2204 1964	0.2534 0.3575
22	ŏ	-1	5958	6355 7108	1.0000		1	i	-9	10981 8588	10295	0.7344	3	1	10	1652 5691	1577 5392	0.7527
2	0	1	2602 7025	3471 6283	1.0000	<i></i>	1	1		7754	7771 8182	0.7152	3	i	12	1226	1926	0.4711
5	000	2	1113	1209 1795	1.0000		1	1	-5	8583 3839	8162 4239	0.7142	3	i	14 15	3477 2238	3570 1384	0.6777
222	000	8	9162 5038	8052 5074	0.5000		1	1	-2	5170 4575	4996	0.7005	3	1	16 17	3603 2319	2986 2565	0.7177
22	ŏ	10 11	9996 3583	9515	0.5000		i	1	0 1	5784	5590	0.7630	3	1	18 19	3047 1697	2740	0.7539
5	0	12 13	8558 5409	8263 6207	0.5000		1	1	3	9658 2161	8501 2127	0.7467 0.1581	3	1	21	1011	1031	0.8111
5	0	14 15	3878 5884	4181 6735	0.5000		1	1	5	27148 12353	28255 11966	0.2511	3	i	26 27	1503 1066	2245 1912	0.7625
5 5 5	000	16	2511	2056	0.5000		1	1	7	11784	11595	0.2784	3	1 1	28 30	3369 1489	3207 1733	0.2351
22	ŏõ	23	1115	1367	1.0000		i	i	9	7802	6269 7552	0.1875	3	1	31 32	1040	1520 1355	0.2388
22	ŏ	25 27	4431 4387	5041 3922	0.0000		i	i	11 12	4548 4006	3697 3075	0.2021) 4 4	1	-24	975 1065	550 988 864	0.2058
5	00	29 31	3327 1977	2635 1772	0.0000		1	1	13 14	1270 1978	1051 1870	0.7149 0.3767	4	i	-19	1051	1127	0.8247
3	0	-24 -23	1476 1029	1587 808	0.5000		1	1	15 16	4886 2243	4614 2400	0.7283	4	i	-17	1036	891	0.9488
2	0	-15 -13	1268 2121	766 1385	1.0000		1	1	17 18	4407 5429	4052 5096	0.7507	4	i	-15 -13	1019	948 1277	0.8975
-	è	-11	1676	1675	1.0000		1	1	20	5273 11015	4808	0.7733	4	1	-12 -10	99 2 976	1219 1719	0.9865 0.9956
3	0	-7	1946	1564	1.0000		1	1	23	3776	3915 2610	0.7928	4	1	-7	956 946	1248 1353	0.1391
A 4	õ	-36 -35	1067 1586	1322 1518	1.0000		i	i	26 30	1928	1937	0.8159	4	1	-3	1330	1624	0.3960
4	ŏ	-34 -33	1657 1216	1863 1257	1.0000		i 1	1	31 32	1053 1062	1315 1453	0.2234	4 4	1		939	1259	0.4161
4	0	-32 -24	1775 1977	1558 1978	1.0000		1	1	33 34	1507 1064	1026 1662	0.2524 0.2256	4 4	i	14 15	1026	1008	0.9198

KÅRE LARSSON

Table 3 (cont.)

н	ĸ	L	POBS	FCALC	FI	н	ĸ	L	FOBS	FCALC	PI	н	ĸ	L	FOBS	PCALC	PI
4 5, 5	1	16 -30	1043 810 845	745 1139	0.9920 0.2342 0.246	2	22	-27 -26	2756 1358	2758 1303	0.9945 0.9573	ê	5	2	9229 3133	8558 2941	0.9356
5	i	-28	877	1079	0.2488	2	5	-25	1335 2568	1233	0.6784	ô	24	50	4380 5128	5258 7262	0.9532
5	1	-26 -25	931 954	1014	0.2834 0.2403	22	ŝ	-22	2745	3376	0.5076	00	4	2	887 1406	2884 1096	0.9656
5	1	-19 -17	1041 1054	1860 878	0.7203	2	20	-19	4050	4252	0.495	0	4	8	1458 1476	1751 1061	0.2143
5	1 1	-15 -14	1502	1645 2006	0.7581 0.7336	22	22	-17	4581	4793	0.4620	00	4	10	2006 1516	2994	0.3002
5	1	-13 -12	2131 1066	1906 1309	0.7674 0.7645	22	22	-15 -14	5164 6167	3447	0.4643	ŏ	4	12	1977	2880	0,5098
5	1	-10	1066	1671 1054	0.7582	5	22	-12 -11	6405 2858	6463 2861	0.4970	ŏ	4	14 15	1615 1643	2184 1964	0.4563
55	i	-3	3351 3178	3125 2044	0.2429	2	22	-10 -2	3480 2727	3132 2544	0.0250	00	4 5	16 3	3172 2869	3360 3083	0.4652
55	i	1 2	1060 3181	1408	0.2363	22	200	-6 -7	4360	3430 4518	0.9886	0	5	5	3718 3342	3292 2756	0.4882
5	1	34	1061 2124	1664 1965	0.2210 0.2988	22	22	-5	3769	4875	0.9426	00	3	ĩ	4695 3784	4738	0.4764
5	1	6 12	1064 1064	1412 1109	0.3259 0.7197	22	2	-3 -2	4198 5781	4685	0.9563	ŏ	5	10	3845	3957	0.5161
5	1	16	1814	2048	0.7026	2	2	-1 0	5215 3906	5740 40 38	0.9773	0 0	55	11	2477 1769	2804	0.4970
Ś	12	19	1018	884	0.8009	22	2	2	4476	5625 2177	0.9966	o	5	16 17	2606 3222	2397 3402	0.5282
0 0	2	8 9	4198 3299	3829 2788	0.5053 0.2676	22	222	24	2062	2124	0.3165	000	5	18 19	4520 4230	4228 3866	0.9618
0	22	10 11	7885 2692	7443 3237	0.5130 0.3582	22	22	67	1946 1538	2523 1784	0.1852	000	25	21	3831	3236	0.9575
0	5	12	8069 4816	7905 4923	0.4972 0.4888	2	2	8 9	8414 3595	7587 2454	0.4553	0 1	54	23	1927 4391	2329	0.99999
000	5	15	7470 6090 802#	7423 5987	0.4723	2	22	10	8178 3375	6865 3808	0.4836 0.4521	i	4	-16 -15	2494 3471	2330 3655	0.7441
ŏ	22	17	4811	4801	0.5378	2	5	12	5654 5328	5385 4918	0.5319 0.4630	1	4	-14 -13	9352 8234	8986 6348	0.7401
o o	22	19 21	4516 1569	4707 1919	0.5373 0.5511	22	20	15	4708	4693	0.4973	1	4	-0 -5	4344	3569 3900	0.1890
0	5	24 26	2433 2869	2850 3083	0.9292 0.9867	22	22	17	2543 1195	2775	0.5725	1	4	-3	5213 5609	5095	0.2380
000	5 5 5	27 28	1857 2683	1905 2709	0.9673 0.9931	2	2	24 25	5333 2713	5825 2999	0.9645	i	4	-1	5794 5982	4712 6666	0.2626
000	222	30	1961	2296	0.9853	2	22	26 27	1376 2414	1941 2519	0.9256	1	4	1 2	5989 6006	5153 5518	0.3008
ő	22	32 33	1414 1419	1843	0.0040	3	22	-24	1394	2001	0.6584	1	4	10	5644 5367	5169 5181	0.2979
0 1	2	34 -30	1417 1974	2113 1887	0.0309 0.2192	33	22	-22	1364	1584	0.6506	1	4	12	4713	4518	0.7244
1	22	-29	1947 1354	1793	0.2691 0.2636	3	2	-20 -19	1876 1306	2616 1588	0.7385	i	4	14 15	3846 3028	3540 3959	0.7548
1	222	-26	1301	1222	0.2353	3	220	-18 -17	3150 1264	3352 1706	0.7606	00	3	56	3599 3326	5903 5974	0.5092
i	22	-24 -23	1238 1206	924 726	0.2254	3	222	-15	1223	1653	0.7721	000	3	8	3281 4433	4694 5975	0.5233
1	22	-22 -20	1171 2701	739 2837	0,6626 0,7343	33	22	-12	1165 2264	1908	0.9698	ŏ	ž	10	1815	2757	0.5148
1	5	-19 -18	2616 1461	2146 1478	0.7105	33	22	-8	2233 1103	2051 1890	0.1904 0.8980	0 0	33	18 19	6203 3770	6773 3842	0.9866
1	22.2	-17 -16	1929	2236	0.7600	3	5	-7	1890 2161	2082 1713	0.1767	0	3	20 21	2755	3131 3968	0.0039
i	22	-14	12331	12055	0.7488	2	222	-7	4995	3980	0.2500	1	3	-13	2929 2235	3289 3379	0.9957
1	22	-12 -11	2878 2395	2223 2623	0.8681 0.7325	ž	22	-2 -1	3952	3819 3386	0.2902	1	3	-11	4139	5134 3158	0.8076
1	5	-10 -2	1877 1801	1408 2155	0.9012 0.2249	33	2	0	1055 3172	1886 3151	0.4200	i 1	33	-8	4433 3168	5785 2690	0.7813
1	220	-8	3309	3665	0.2073	3	2	26	1061 1897	2141 2365	0.4076	1	3	-7 -6	4075 2913	5221 2617	0.7445
i	22	-5	2563 5115	3388 4981	0.2117	2	2 2	8	1122	829 1605	0.6353	1	3	-5	3229 2518	4271 3471	0.7311
1 1	5	-3 -2	5084 3994	6153 4755	0.2132 0.2591	53	22	10 11	4162	3878 4893	0.7319	1	3	ž	3053	4023	0.2117
1	2	-1	4786 5710	5516 6849	0.2288	3	2	12 13	1684 1712	1881 2472	0.7523	1	3	5	7054 4128	6658 3456	0.2378
1	220	2	5073	5297 6808	0.2824	3	22	14	1230 1251	1543 1481	0.7871	1	3	7 8	5929 3229	6518 2518	0.2213
i	22	4 5	4675	5098 1309	0.6984 0.3867	4	222	-2)	1418	2570 766 2221	0.6361	2	3	-15	4517 2712	4896 2080	0.2296
1 1	22	6 7	1980 4355	1930 4699	0.3373 0.7227	4	22	-19	1996 2810	2388	0.5381	22	2	-10	6882 7433	6663	0.9908
1 1	22	8 9	1760 1060	1054 1318	0.4925 0.6986	4 4	22	-17 -16	1397 1388	1908 1488	0.5356	22	3	-8 -7	4243	4266	0.0434
1	5 2 2	10	6808 1626	5603 1049	0.7202	4	2	-15 -10	1379 1329	1543 1312	0.5209	2	3	-6 -1	4434 ≥985	4254 2610	0.0570
i	200	13	4393	4029	0.7519	4	5	-9	1320	2207 1569	0.9304	5	3	2	5838 5392	5049 4014	0.4471
i	2	15 16	3783	3352 2627	0.7396 0.7955	4	22	-6	1299	1277	0.9720	20	2	2	6894	5716	0.4631
1	2	17 19	2029 2167	2227 2353	0.7637 0.7372	4	22	->	4454 2568	4427 2644	0.9877	22	3	767	8308 9854	6874 8434	0.4979
1	5	20	2739	2937 542	0.7502	4	22	-1 1	2566 1285	2700 1628	0.9928	23	3	-8	4154 5658	3194 4680	0.6422
1	200	23	1220	1122 1584 1785	0.2021	4	5 5 5	6	1835 2621	1601 2517	0.4007	3	3	-7	4850 2736	3119 1065	0.7828
i	22	25 26	1285	2446	0.1637 0.2166	4	200	8	2299	2467	0.4907	2	2	-1	4097 3844 3859	2967	0.1776
1	2	27	1341 1385	12.3 1824	0.2088 0.2478	4	22	10 11	1904 1918	1813 1996	0.4738	3	ž	2	3878	2533	0.2046
1	200	-33	1402 1990	1154 2230	0.2213	4	2	12 13	1367 1377	1652 1288	0.5129	5	3	5	3937	2789	0.2712
* * *	50	-30	1416	1321	0.9314	000	5	0	30167 8567	32304 7874	0.0084						
•	¢					U	2	5	5152	5088	0.1050						

Table 4. Bond distances and angles

Bond	Distance	Bond	Angle
Br(1) - C(1)	1·97 Å	Br(1) - C(1) - C(2)	107·3°
C(1) - C(2)	1.44	C(1) - C(2) - C(3)	104.5
C(2) - C(3)	1.62	C(2) - C(3) - C(4)	103.9
C(3) - C(4)	1.60	C(3) - C(4) - C(5)	104.2
C(4) - C(5)	1.52	C(4) - C(5) - C(6)	107.3
C(5) - C(6)	1.54	C(5) - C(6) - C(7)	108.8
C(6) - C(7)	1.51	C(6) - C(7) - C(8)	109.0
C(7) - C(8)	1.59	C(7) - C(8) - C(9)	105-2
C(8)C(9)	1.54	C(8) - C(9) - C(10)	96.8
C(9) - C(10)	1.60	C(9) - C(10) - C(11)	105.6
C(10) –C(11)	1.49	C(10) - C(11) - O(1)	128.3
C(11) –O(1)	1.25	C(10) - C(11) - O(2)	114.2
C(11) –O(2)	1.32	O(1) - C(11) - O(2)	116-9
O(2) - C(12)	1.42	C(11) - O(2) - C(12)	122.6
C(12) - C(13)	1.45	O(2) - C(12) - C(13)	105-9
C(13) - C(14)	1.54	C(12) - C(13) - C(14)	107.0
C(13) - O(3)	1.49	C(12) - C(13) - O(3)	106-2
C(14) - O(4)	1.51	O(3) - C(13) - C(14)	102.8
$Br(\Gamma) - C(\Gamma)$	2.00	C(13) - C(14) - O(4)	102.7
$C(1^{\circ}) - C(2^{\circ})$	1.52	Br(1') - C(1') - C(2')	110.4
C(2') - C(3')	1.69	C(1') - C(2') - C(3')	106.1
$C(3^{\prime}) - C(4^{\prime})$	1.48	C(2') - C(3') - C(4')	108-1
$C(4^{\prime}) - C(5^{\prime})$	1.52	C(3') - C(4') - C(5')	106.5
C(5') - C(6')	1.50	C(4') - C(5') - C(6')	109.2
C(6') - C(7')	1.50	C(5') - C(6') - C(7')	110.2
C(7) = C(8)	1.57	C(6') - C(7') - C(8')	112.5
C(8') - C(9')	1.51	C(7) - C(8) - C(9)	110.6
C(9) = C(10)	1.52	C(8') - C(9') - C(10')	105.9
C(10) = C(11)	1.44	$C(9^{\circ}) = C(10^{\circ}) = C(11^{\circ})$	110.2
C(11) = O(1)	1.19	$C(10^{\circ}) - C(11^{\circ}) - O(1^{\circ})$	126.0
C(11) = O(2)	1.50	$C(10^{\circ}) - C(11^{\circ}) - O(2^{\circ})$	112.8
C(12) = C(12)	1.50	O(1) - C(11) - O(2)	120.9
C(12) - C(13)	1.49	$C(11) = O(2^{2}) = C(12^{2})$	109.5
C(13) - C(14)	1.40	$O(2^{\circ}) = O(12^{\circ}) = O(13^{\circ})$	95.0
C(13) = O(3)	1.49	O(12) - C(13) - C(14')	99.5
C(1+) = O(4)	1.40	O(12) = O(13) = O(3')	99·4
		C(12) = C(13) = C(14')	99.0
		U(13) = U(14) = U(4')	112.6

pairs to participate in hydrogen bonds either by disorder of the hydrogen atoms or by a bifurcation of the hydrogen bond. Only one free electron pair of each oxygen atom, however, is hydrogen bonded in this structure, so that there are two hydrogen bonds per oxygen atom as in normal alcohols (Abrahamsson, Larsson & von Sydow, 1960) and 2-monoglycerides (Larsson, 1964b). The molecules are linked with neighbouring molecules both over the gap between the mol-

٩

ecular layers and laterally within the layers so that an infinite two-dimensional net-work is formed (*cf.* Figs. 2 and 3).

I wish to thank Dr S. Abrahamsson for valuable discussions. Financial support has been obtained from the Swedish Natural Science Research Council and the U.S. Public Health Service (GM-11653).

Table 5. Short oxygen-oxygen contacts (<3.0 Å) between hydroxyl groups, and the angles they form with corresponding carbon-oxygen bonds

The values for intermolecular contacts are given in brackets. The suffix 2_1 is used for atoms with z > 0.5 (possessing 2_1 -relation to those given in the asymmetric unit).

O(3) –O(4')	2·76 Å	O(3) - O(4') - C(14')	100·6°
		C(13) - O(3) - O(4')	129.3
$O(3) - O(4')2_1$	2.74	$O(3) - O(4')2_1 - C(14')2_1$	112.9
		$C(13) - O(3) - O(4')2_1$	124.2
O(3')–O(4)	2.61	O(3') - O(4) - C(14)	117.0
		C(13')-O(3') -O(4)	143.7
$O(3') - O(4)2_1$	2.90	$O(3') -O(4)2_1 -C(14)2_1$	97.4
		$C(13')-O(3') -O(4)2_1$	121-3
O(3) -O(4)	(2.85)	C(13) - O(3) - O(4)	(56.8)
		C(14) - O(4) - O(3)	(56.5)
O(3')-O(4')	(2.87)	C(13')-O(3') -O(4')	(56.4)
		C(14')-O(4') -O(3')	(50.5)

References

- ABRAHAMSSON, S., LARSSON, G. & VON SYDOW, E. (1960). Acta Cryst. 13, 770.
- ABRAHAMSSON, S. & MASLEN, E. N. (1963). Z. Kristallogr. 118, 1.
- Abrahamsson, S., Aleby, S., Larsson, K., Nilsson, B., Selin, K. & Westerdahl, A. (1965). Acta Chem. Scand. 19, 758.
- BAER, E. & FISCHER, H. O. L. (1945). J. Amer. Chem. Soc. 67, 2031.
- JENSEN, L. H. & MABIS, A. J. (1963). Nature, Lond. 197, 681.
- LARSSON, K. (1963a). Acta Cryst. 16, 741.
- LARSSON, K. (1963b). Acta Chem. Scand. 17, 221.
- LARSSON, K. (1964a). Ark. Kemi, 23, 1.
- LARSSON, K. (1964b) Ark. Kemi, 23, 23.
- LARSSON, K. (1964c) Ark. Kemi, 23, 35.
- VAND, V. & BELL, I. P. (1951). Acta Cryst. 4, 465.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.